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Abstract
We study entire solutions to homogeneous reaction–diffusion equations  in 
several dimensions with Fisher–KPP reactions. Any entire solution 0 < u < 1 
is known to satisfy

lim
t→−∞

sup
|x|�c|t|

u(t, x) = 0 for each c < 2
√

f ′(0),

and we consider here those satisfying

lim
t→−∞

sup
|x|�c|t|

u(t, x) = 0 for some c > 2
√

f ′(0).

When f  is C2 and concave, our main result provides an almost complete 
characterization of transition fronts as well as transition solutions with 
bounded width within this class of solutions.
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1.  Introduction

In this paper we study entire solutions of reaction–diffusion equations

ut = ∆u + f (u) on R× Rd,� (1.1)
with Fisher–KPP reaction functions f ∈ C1+γ([0, 1]) for some γ > 0. Specifically, we also 
assume that

f (0) = f (1) = 0, f ′(0) = 1, 0 < f (u) � u on (0, 1).� (1.2)

We note that a simple scaling argument extends our results to the general Fisher–KPP case

f (0) = f (1) = 0, f ′(0) > 0, 0 < f (u) � f ′(0)u on (0, 1).

The study of (1.1) was started 80 years ago by Kolmogorov et al [13] and Fisher [6] in one 
dimension d = 1, while here we consider entire solutions u : Rd+1 → [0, 1] for any d � 1. 
These model the propagation of reactive processes such as forest fires, nuclear reactions in stars, 
or population dynamics. The value u = 0 represents the unburned (or minimal-temperature 
or zero-population-density) state, while u = 1 represents the burned (or maximal-temperature 
or maximal-population-density) state. Fisher–KPP reactions possess the ‘hair-trigger effect’, 
meaning that for any solution 0 � u � 1 except u ≡ 0, the asymptotically stable state u = 1 
will invade the whole spatial domain Rd as t → ∞ (while the state u = 0 is unstable). In fact, 
we have [1]

lim
t→∞

inf
|x|�ct

u(t, x) = 1 for each c < 2.� (1.3)

This immediately implies that except when u ≡ 1, we also have

lim
t→−∞

sup
|x|�c|t|

u(t, x) = 0 for each c < 2.� (1.4)

Note that the strong maximum principle and 0 � u � 1 imply that 0 < u < 1 whenever 
u �≡ 0, 1, and we will assume this from now on.

In their pioneering work [10], Hamel and Nadirashvili provided a partial characterization 
of such solutions of (1.1). Under the additional hypotheses of f ∈ C2([0, 1]), f  being concave, 
and f ′(1) < 0, they identified all solutions u : Rd+1 → (0, 1) which also satisfy (see (1.4))

lim
t→−∞

sup
|x|�c|t|

u(t, x) = 0 for some c > 2� (1.5)

(we will call these Hamel–Nadirashvili solutions). They showed that these solutions are natu-
rally parametrized by all finite positive Borel measures supported inside the open unit ball 
in Rd (see remark 1 after theorem 1.2 below). One of us later showed [27] that this infinite-
dimensional manifold of solutions, parametrized by Borel measures, also exists without the 
additional hypotheses from [10] (see theorem 1.2), although it is not yet known whether other 
solutions satisfying (1.5) can exist in this case.

It follows from (1.3) and (1.4) that all entire solutions 0 < u < 1 for Fisher–KPP reactions 
satisfy

lim
t→−∞

u(t, x) = 0 and lim
t→∞

u(t, x) = 1� (1.6)

locally uniformly. Our goal here is to study the nature of this transition from 0 to 1. Aerial 
footage of forest fires usually shows relatively narrow lines of fire separating burned and 
unburned areas, and we investigate the question of which entire solutions also have this prop-
erty. More specifically, we investigate which are transition fronts, defined by Berestycki and 
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Hamel in [2, 3] (and earlier in some special situations by Matano [15] and Shen [21]); and 
more generally, which are transition solutions with bounded width, defined by one of us in 
[30]. Let us now state these definitions.

For any u as above, t ∈ R, and ε ∈ [0, 1] let

Ωu,ε(t) := {x ∈ Rd : u(t, x) � ε},

Ω′
u,ε(t) := {x ∈ Rd : u(t, x) � ε},

and for any E ⊆ Rd and L > 0 let

BL(E) :=
⋃
x∈E

BL(x),

with the convention BL(∅) = ∅.

Definition 1.1.  Let 0 < u < 1 be an entire solution to (1.1).

	 (i)	�u is a transition solution if it satisfies (1.6) locally uniformly.
	(ii)	�u has bounded width if for each ε ∈

(
0, 1

2

)
 there is Lε < ∞ such that

Ωu,ε(t) ⊆ BLε
(Ωu,1−ε(t)) for each t ∈ R.� (1.7)

	(iii)	�u is a transition front if it has bounded width, for each ε ∈
(
0, 1

2

)
 there is L′

ε < ∞ such 
that

Ω′
u,1−ε(t) ⊆ BL′

ε
(Ω′

u,ε(t)) for each t ∈ R,� (1.8)

		 and there are n, L such that for any t ∈ R, there is a union Γt  of at most n rotated con-
tinuous graphs in Rd which satisfy

∂Ωu,1/2(t) ⊆ BL(Γt).

Remarks. 

	 1.	�When f  is Fisher–KPP, then all entire solutions 0 < u < 1 are transition solutions (this is 
not true for more general f ).

	 2.	�A rotated continuous graph in Rd is a rotation of the graph of some continuous function 
h : Rd−1 → R (which is a subset of Rd).

	 3.	�The original definition of transition fronts in [2, 3] was slightly different from (iii), but the 
two are equivalent [30].

	 4.	�In one dimension d = 1 the set Γt  in (iii) is just a collection of at most n points. The 
special case n = 1 of transition fronts with a single interface is of particular interest and 
has recently been studied extensively for various types of reaction (see, e.g. [3, 5, 9, 11, 
12, 14, 16–29]). These are entire solutions 0 < u < 1 satisfying

lim
x→−∞

u(t, x + xt) = 1 and lim
x→∞

u(t, x + xt) = 0� (1.9)

		 uniformly in t ∈ R, where xt := max{x ∈ R : u(t, x) = 1
2} (or with 0 and 1 exchanged in 

(1.9)). They were introduced as a generalization of the concept of travelling fronts, solu-
tions of the form u(t, x) = U(x − ct) for some decreasing front profile U : R → (0, 1) with 
lims→−∞ U(s) = 1 and lims→∞ U(s) = 0, and some front speed c. (It is well known that 
for (1.1) with a Fisher–KPP reaction, these exist if and only if c � 2

√
f ′(0).) Travelling 

fronts, which were already studied in [6, 13], only exist for homogeneous reactions, and 
transition fronts are their natural generalization that can exist in both homogeneous and 
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heterogeneous (i.e. x-dependent) media. We discuss recent results concerning transition 
fronts for homogeneous reactions below.

	 5.	�Solutions satisfying (1.7) and (1.8) but not necessarily the closeness-to-graphs condition 
are said to have doubly bounded width [30]. Our main result (theorem 1.3) and its proof 
remain unchanged when ‘transition fronts’ are replaced by ‘transition solutions with 
doubly bounded width’.

It is easily seen that a transition solution u is a transition front if and only if the Hausdorff 
distance of any two level sets {x ∈ Rd : u(t, x) = ε} of u stays bounded uniformly in time, and 
the level set {x ∈ Rd : u(t, x) = 1

2} (then also any other) is at each time uniformly close to a 
uniformly bounded number of time-dependent rotated continuous graphs. In contrast, u is a 
transition solution with bounded width if and only if the Hausdorff distance of any two super-
level sets Ωu,ε(t) of u stays bounded uniformly in time.

This distinction results in some notable differences. For instance, transition fronts (and 
transition solutions with doubly bounded width) satisfy

inf
x∈Rd

u(t, x) = 0 and sup
x∈Rd

u(t, x) = 1� (1.10)

for each t ∈ R, while transition solutions with bounded width only satisfy the second claim 
in (1.10). Also, transition solutions with bounded width in dimensions d � 2 may involve 
dynamics where the invading state u ≈ 1 first encircles large regions where u ≈ 0 (with their 
sizes unbounded as t → ∞) and then invades them. On the other hand, such solutions cannot 
be transition fronts (or have doubly bounded width) because, for instance, at some time t there 
will be a point x with u(t, x) = 2

3 near the centre of such a region but points y with u(t, y) = 1
3 

will all lie outside of this region (and, thus, far away from x). Because this phenomenon does 
occur for various heterogeneous reactions (e.g. for stationary ergodic reactions with short-
range correlations), preventing the existence of transition fronts in these settings, it is impor-
tant to study both these classes of solutions to (1.1). We refer to [30] for a more detailed 
discussion of the relevant issues.

Coming back to the homogeneous equation (1.1) with a Fisher–KPP reaction f , the first 
systematic study of its entire solutions was undertaken in [9, 10] under some additional condi-
tions on f . We will use here the following closely related result from [27], which concerns the 
main object of our study—the Hamel–Nadirashvili solutions to (1.1) — and holds for general 
Fisher–KPP reactions. In order to state it, first recall that if µ is a positive Borel measure on 
Rd, its support supp(µ) is the minimal closed set A such that µ(Ac) = 0, while its essential 
support is any Borel set A such that µ(A) = µ(Rd) and µ(A′) < µ(A) whenever A′ ⊆ A and 
A \ A′ has positive Lebesgue measure. The collection of all essential supports of µ will be 
denoted by ess supp(µ). Following [27], we then define the convex hull of µ to be

ch(µ) :=
⋂

A∈ess supp(µ)
ch(A),

where ch(A) is the convex hull of the set A. Note that we may have ch(µ) /∈ ess supp(µ) 
[27]. Finally, let Br denote the open ball Br(0) ⊆ Rd  with radius r  and centred at 0, and let 
Sd−1 := ∂B1.

Theorem 1.2 ([27]).  Assume that f ∈ C1+γ([0, 1]) for some γ > 0 and satisfies (1.2), let µ 
be a finite positive non-zero Borel measure on Rd with supp(µ) ⊆ B1, and let

vµ(t, x) :=
∫

B1

e−ξ·x+(|ξ|2+1)t dµ(ξ).� (1.11)

A Alwan et alNonlinearity 32 (2019) 927
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	 (i)	�There is an increasing function h : [0,∞] → [0, 1) with h(0) = 0, h′(0) = 1 and 

limv→∞ h(v) = 1, and an entire solution uµ of (1.1) such that (uµ)t > 0 and

h(vµ) � uµ � min{vµ, 1}.� (1.12)

		 In addition, uµ �≡ uµ′ whenever µ �= µ′.
	(ii)	�We have

inf
x∈Rd

uµ(t, x) = 0 and sup
x∈Rd

uµ(t, x) = 1� (1.13)

		 for each t ∈ R if and only if 0 �∈ ch(µ).
	(iii)	�If 0 �∈ supp(µ), then uµ has bounded width.

Remarks. 

	 1.	�If also f ∈ C2([0, 1]) and it is concave, then [10, theorem 1.2] shows that the solutions 
from (i) are precisely those entire solutions 0 < u < 1 satisfying (1.5). We note that for 
such f , [10] also constructs entire solutions corresponding to some measures supported 
in B̄1 but not in B1 (which then do not satisfy (1.5)), namely those whose restriction to 
Sd−1 is a finite sum of Dirac masses5.

	 2.	�Note that the functions e−ξ·x+(|ξ|2+1)t and vµ from (1.11) solve the linearization

vt = ∆v + v

		 of (1.1) at u = 0. Moreover, if we denote c|ξ| := |ξ|+ 1
|ξ| for ξ �= 0, then

e−ξ·x+(|ξ|2+1)t = e−ξ·x+|ξ|c|ξ|t = e−ξ·(x− ξ
|ξ| c|ξ|t).

		 So this is an exponential that moves with speed c|ξ| in the direction ξ
|ξ|.

	 3.	�(ii) and (1.10) show that 0 �∈ ch(µ) is a necessary condition for uµ to be a transition front.
	 4.	�This result, and thus also theorem 1.3 below, holds for f  satisfying (1.2) which is 

only Lipschitz, as long as f (u) � g(u) on [0, 1] for some g ∈ C1([0, 1]) such that 

g(0) = g(1) = 0, g′(0) = 1, g(u) > 0 and g′(u) � 1 on (0, 1), and 
∫ 1

0
u−g(u)

u2 du < ∞ 

[27]. We note that if f ∈ C1+γ([0, 1]) satisfies (1.2), then there exists such function g 
with g(u) = u − Cu1+γ for some C and all small u � 0.

We now turn to our main result, an almost complete characterization of transition fronts 
as well as transition solutions with bounded width within the class of the solutions from 
theorem 1.2. Recall that if f ∈ C2([0, 1]) is concave and f ′(1) < 0, then this class coincides 
with the class of Hamel–Nadirashvili solutions. In one dimension d = 1 and under these extra 
hypotheses, a complete characterization of transition fronts among all the solutions from was 
recently obtained by Hamel and Rossi [12]. (These solutions are then parametrized by finite 
positive non-zero Borel measures µ on the interval [−1, 1] = B̄1, or on (−2, 2)c ∪ {∞} after 
the transformation ξ �→ (1 + |ξ|−2)ξ  mentioned above.) They proved that the solution uµ is 
a transition front if and only if supp(µ) ⊆ [−1, 0) or supp(µ) ⊆ (0, 1]. In several dimensions, 
this task is considerably more challenging because the geometry of B1 is more complicated 
there. In fact, we are not aware of any relevant previous results for Fisher–KPP reactions. 
We note that transition fronts and transition solutions with bounded width for ignition and 
bistable reactions satisfying very mild hypotheses were proved to increase in time [3, 30], and 

5 In fact, the measures in [10] are supported in Bc
2 ∪ {∞} but the map ξ �→ (1 + |ξ|−2)ξ  establishes the relevant 

correspondence between B̄1 and Bc
2 ∪ {∞}.
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examples of transition fronts for homogeneous bistable reactions that are not travelling fronts 
were recently constructed in [8].

For ζ ∈ Sd−1 and α ∈ [0, 1], let

Wα,ζ := {x ∈ Rd : x · ζ � α|x|},

which is a closed cone with axis ζ when α > 0, while W0,ζ is the closed half-space with inner 
normal ζ. We will also call an upright cone

Wα := Wα,ed = {x ∈ Rd : xd � α|x|}.� (1.14)

Theorem 1.3.  Let f ,µ, uµ be as in theorem 1.2.

	 (i)	�If there are ζ ∈ Sd−1 and α > 0 such that

0 /∈ supp(µ) ⊆ Wα,ζ ,� (H1)

		 then uµ is a transition front (and hence also a transition solution with bounded width).
	(ii)	�If there are ζ ∈ Sd−1 and α > 0 such that

0 ∈ supp(µ) ⊆ Wα,ζ ,� (H2)

		 then uµ is not a transition solution with bounded width (and hence also not a transition 
front).

	(iii)	�If

supp(µ) �⊆ W0,ζ for each ζ ∈ Sd−1,� (H3)

		 then uµ is a transition solution with bounded width but not a transition front.

Notice that the only cases of measures from theorem 1.2 not covered by this result are 
those supported in some half-space W0,ζ but not in any cone Wα,ζ with α > 0. We can still 
say something in this case: if 0 /∈ supp(µ), then theorem 1.2(iii) shows that uµ is a transition 
solution with bounded width, and we also conjecture that uµ is not a transition front. However, 
if 0 ∈ supp(µ), then determining whether uµ is a transition front and/or a transition solution 
with bounded width will likely be a very delicate question.

We prove the three parts of theorem 1.3 in the following three sections, leaving some tech-
nical lemmas for the appendix.

2.  Proof of theorem 1.3(i)

We may assume without loss of generality that ζ = ed, so that the cone Wα,ζ = Wα is upright. 
Then (H1) implies there is δ > 0 such that

supp(µ) ⊆ Wα ∩ A(δ, 1),� (2.1)

with A(r1, r2) := Br2 \ Br1 an annulus. In particular,

inf{xd : x ∈ supp(µ)} � αδ > 0.

Let us first show that uµ has bounded width (recall that each uµ is a transition solution). This 
follows immediately from theorem 1.2 but our argument will also be useful in the proof that uµ is a 
transition front. Let ε ∈

(
0, 1

2

)
 and x ∈ Ωuµ,ε(t), and define s := (αδ)−1 ln(h−1(1 − ε)/ε) � 0 

and xs := x − sed . Here h is the µ-dependent function from theorem 1.2(i) (and we note that 
h−1(v) � v). From (2.1) we have

A Alwan et alNonlinearity 32 (2019) 927
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vµ(t, xs) =

∫

B1

es(ξ·ed)e−ξ·x+(|ξ|2+1)t dµ(ξ) � esαδ
∫

B1

e−ξ·x+(|ξ|2+1)t dµ(ξ),

so the definition of s and (1.12) yield

vµ(t, xs) �
h−1(1 − ε)

ε
vµ(t, x) �

h−1(1 − ε)

ε
uµ(t, x) � h−1(1 − ε).

From (1.12) we now have xs ∈ Ωuµ,1−ε(t), so (1.7) with u = uµ holds for each t ∈ R and 
Lε := s + 1. Hence uµ is a transition solution with bounded width.

The verification of (1.8) for uµ is analogous. If ε ∈
(
0, 1

2

)
 and x ∈ Ω′

uµ,1−ε(t), then the 
above argument for xs := x + sed  yields

vµ(t, xs) �
ε

h−1(1 − ε)
vµ(t, x) �

ε

h−1(1 − ε)
h−1(uµ(t, x)) � ε.

From (1.12) we now have xs ∈ Ω′
uµ,ε(t), so (1.8) with u = uµ holds for each t ∈ R and 

L′
ε := Lε.

Finally, the last claim in definition 1.1(iii) is satisfied with Γt := {x ∈ Rd : vµ(t, x) = 1
2} 

(which is a graph of a function of (x1, . . . , xd−1) because supp(µ) ⊆ Wα ∩ A(δ, 1) implies 
(vµ)xd < 0) and any L > Lh(1/2). Indeed, if uµ(t, x) = 1

2, then x ∈ Ω′
uµ,1−h(1/2)(t), so (1.12) 

and the above arguments show that vµ(t, x) � 1
2 as well as

vµ(t, x + Lh(1/2)ed) � h−1 (uµ(t, x + Lh(1/2)ed)
)
� h−1

(
h
(

1
2

))
=

1
2

.

Hence there is l ∈ [0, Lh(1/2)] such that x + led ∈ Γt, and it follows that uµ is indeed a trans
ition front.

3.  Proof of theorem 1.3(ii)

We again assume without loss of generality that ζ = ed, so the cone Wα,ζ = Wα is upright, 
and let h be the µ-dependent function from theorem 1.2(i). We will now show that the width 
of the transition zone of uµ becomes unbounded as t → ∞, violating definition 1.1(ii). Thus, 
uµ is neither a transition solution with bounded width nor a transition front.

First consider the case µ({0}) > 0 and let t0 := ln(2µ({0})). Then from the Lebesgue 
dominated convergence theorem, we have

lim
xd→∞

vµ(−t0, x) = µ({0})e−t0 =
1
2

(� vµ(−t0, x) for all x ∈ Rd)

locally uniformly in (x1, . . . , xd−1). This and theorem 1.2(i) show that there is M < ∞ such 
that uµ(−t0, x) ∈ [h( 1

2 ),
2
3 ] whenever xd > M . Thus Lmin{h(1/2),1/4} from (1.7) with u = uµ 

cannot be finite and we are done.
Let us now assume µ({0}) = 0, and fix any ε ∈ (0, 1

4 ) such that h−1(ε) � 1
4. For each 

t ∈ R, let X(t) = (0, . . . , 0, st) be such that vµ(t, X(t)) = h−1(ε). This point is unique because 
supp(µ) ⊆ Wα and µ({0}) = 0 imply (vµ)xd < 0.

Fix any δ ∈ (0, 1) and let δ′ ∈ (0, δ) be such that cδ′ � 3
αcδ. For instance, δ′ = αδ

6  works. 
Next let

A Alwan et alNonlinearity 32 (2019) 927
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v1(t, x) :=
∫

A(δ,1)
e−ξ·x+|ξ|c|ξ|t dµ(ξ),

v2(t, x) :=
∫

Bδ

e−ξ·x+|ξ|c|ξ|t dµ(ξ),

v3(t, x) :=
∫

Bδ′

e−ξ·x+|ξ|c|ξ|t dµ(ξ),

so that vµ = v1 + v2. Note also that (vj)xd < 0 for j = 1, 2, 3.
Let now rt := 2

αcδt and Y(t) = (0, . . . , 0, rt). Then from c|ξ| being decreasing in |ξ| ∈ (0, 1], 
we obtain for any ξ ∈ Wα ∩ A(δ, 1) and t � 0,

−ξ · Y(t) + |ξ|c|ξ|t � −|ξ|(αrt − cδt) � −δcδt � −t.

On the other hand, for ξ ∈ Wα ∩ Bδ′ and t > 0 we obtain

−ξ · Y(t) + |ξ|c|ξ|t � |ξ|(cδ′ t − rt) �
|ξ|cδ
α

t.

From these, µ([Wα ∩ Bδ′ ] \ {0}) > 0, and the Lebesgue dominated convergence theorem it 
follows that

lim
t→∞

v1(t, Y(t)) = 0 and lim
t→∞

v3(t, Y(t)) = ∞.

Therefore st > rt and limt→∞ v1(t, X(t)) = 0. But then from vµ = v1 + v2, |∇v1| �
√

dv1, 
|∇v2| �

√
dδv2, and vµ(t, X(t)) � 1

4 it follows that

lim
t→∞

sup
y∈B

d−1/2δ−1 ln 2

vµ(t, X(t) + y) �
1
2

.

Then since vµ(t, X(t)) = h−1(ε), applying theorem 1.2(i) shows that uµ(t, X(t)) � ε and

lim
t→∞

sup
y∈B

d−1/2δ−1 ln 2

uµ(t, X(t) + y) �
1
2

.

This shows that Lε from (1.7) with u = uµ must satisfy Lε � d−1/2δ−1 ln 2. Since δ > 0 was 
arbitrary, such Lε < ∞ cannot exist and we are done.

4.  Proof of theorem 1.3(iii)

Throughout this section, int(E) and ∂E  denote the interior and boundary of a set E ⊆ Rd. We 
split the proof into two parts.

4.1.  Proof that uµ is not a transition front

This follows immediately from theorem 1.2(ii) and the following result.

Proposition 4.1.  If µ satisfies (H3), then 0 ∈ ch(µ).

The proof of proposition 4.1 uses several results from convex analysis:

Lemma 4.2 (Section 9, chapter 6, theorem 3 in [4]).  Let S ⊆ Rd  be a nonempty  
compact set. Then 0 �∈ ch(S) if and only if there exists a ζ ∈ Sd−1 such that S ⊆ int(W0,ζ).
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Lemma 4.3 (Theorem ∆n in [7]).  If S ⊆ Rd  and x ∈ int(ch(S)), then there is S∗ ⊆ S 
such that card(S∗) � 2d  and x ∈ int(ch(S∗)).

Finally, we need a technical result concerning the stability of the convex hull of a finite set 
of points, which we prove in the appendix.

Proposition 4.4.  If S∗ = {x1, . . . , xk} ⊆ Rd  and 0 ∈ int(ch(S∗)), then there is ε > 0 such 
that for all yi ∈ Bε(xi), we have 0 ∈ ch({y1, . . . , yk}).

Proof of proposition 4.1.  By (H3), supp(µ) �⊆ int(W0,ζ) for any ζ ∈ Sd−1. Since supp(µ) 
is compact, lemma 4.2 implies that 0 ∈ ch(supp(µ)). We cannot have 0 ∈ ∂(ch(supp(µ))) be-
cause then the convexity of ch(supp(µ)) would imply the existence of a supporting hyperplane 
H  of ch(supp(µ)) such that 0 ∈ H (and then H = ∂W0,ζ for some ζ ∈ Sd−1). This implies 
that supp(µ) ⊆ ch(supp(µ)) ⊆ W0,ζ, yielding a contradiction. Therefore 0 ∈ int(supp(µ)), 
and lemma 4.3 shows that there exist k � 2d  points {x1, . . . , xk} ⊆ supp(µ) such that

0 ∈ int(ch({x1, . . . , xk})).

By proposition 4.4, there is ε > 0 such that 0 ∈ ch({y1, y2, . . . , yk}) whenever yi ∈ Bε(xi) 
for each i = 1, . . . , k . Since any A ∈ ess supp(µ) satisfies A ∩ Bε(xi) �= ∅ for each 
i = 1, . . . , k  (because xi ∈ supp(µ) and so µ(Bε(xi)) > 0), it follows that 0 ∈ ch(A). There-
fore, 0 ∈ ch(µ).� ■ 

4.2.  Proof that uµ is a transition solution with bounded width

Let us start with some preliminary lemmas. Note that we obviously have µ(Wc
0,ζ) > 0 for any 

ζ ∈ Sd−1.

Lemma 4.5.  If µ satisfies (H3), then

a∗ := inf
ζ∈Sd−1

µ(Wc
0,ζ) > 0.

Proof.  If a∗ = 0, then there is a sequence {ζn} ⊆ Sd−1 with µ(Wc
0,ζn

) < 2−n for each n. By 
compactness of Sd−1, after passing to a sub-sequence we can assume that ζn → ζ ∈ Sd−1. But

Wc
0,ζ ⊆

∞⋂
j=1

∞⋃
n=j

Wc
0,ζn

then yields µ(Wc
0,ζ) = 0, a contradiction with (H3).� ■ 

For N � 1, let

ZN := {ζ ∈ Sd−1 : µ(CN,ζ) > 0},

where for ζ ∈ Sd−1 we let

CN,ζ := int(WN−1,−ζ ∩ A(N−1, 1)).

Lemma 4.6.  If µ satisfies (H3), then ZN = Sd−1 for some N � 1.
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Proof.  Note that ZN  is open in Sd−1 for each N � 1 because we have CN,ζ ⊆
⋃∞

n=1 CN,ζn 
whenever ζn → ζ . Since obviously ZN ⊆ ZN+1 for each N , it follows that {Zc

N}∞N=1 is a decreas-

ing sequence of compact sets. If none of these is empty, then there exists ζ ∈ Sd−1 \
⋃∞

N=1 ZN , 

which contradicts Wc
0,ζ =

⋃∞
N=1 CN,ζ  and µ(Wc

0,ζ) > 0.� ■ 

From this, similarly to lemma 4.5, we obtain the following.

Lemma 4.7.  If µ satisfies (H3) and N  is from lemma 4.6, then

b∗ := inf
ζ∈Sd−1

µ(CN,ζ) > 0.

From now on, we fix N  from lemma 4.6 and b∗ from lemma 4.7 (both depending on µ). We 
will now prove (1.7) for uµ, first considering all large negative t.

Lemma 4.8.  If µ satisfies (H3) and ε ∈ (0, 1
2 ), then there are K, T > 0 such that 

uµ(t, x) � 1 − ε whenever t � −T  and |x| � K|t|.

Proof.  Let K := 3N2 and T := ln h−1(1−ε)
b∗  (it suffices to consider ε > 0 such that 

1 − ε > h(b∗)). Since for any x ∈ Rd \ {0} we obviously have

inf
ξ∈CN,x|x|−1

(
−ξ · x

|x|

)
�

1
N2 ,

for any t � −T  and x ∈ Rd with |x| � K|t| we obtain

vµ(t, x) =
∫

B1

e−ξ·x+(|ξ|2+1)t dµ(ξ)

�
∫

CN,x|x|−1

e|x|N
−2+2t dµ(ξ)

� e(KN−2−2)|t|µ(CN,x|x|−1)

� eTb∗

= h−1(1 − ε).

Theorem 1.2(i) now finishes the proof.� ■ 

Lemma 4.9.  If µ satisfies (H3) and ε ∈ (0, 1
2 ), then the following holds for any a > 0. 

There are Ta, δa > 0 such that if (t, x) ∈ (−∞,−Ta]× Rd  and uµ(t, x) < 1 − ε, then
∫

Bδa

e−ξ·x+(|ξ|2+1)t dµ(ξ) � a.

Proof.  We can assume without loss of generality that a � µ(B1). Let K, T  be from lemma 
4.8 and define

Ta := max

{
T , 1 +

∣∣∣∣ln
a

µ(B1)

∣∣∣∣
}

,

δa :=
1
K


1 −

∣∣∣ln a
µ(B1)

∣∣∣
Ta


 > 0.
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Since Ta � T , lemma 4.8 shows that for any (t, x) as above, we must have |x| < K|t|. We also 
have δaK − 1 < 0, hence for any t � −Ta we find

(δaK − 1)|t| � (δaK − 1)Ta � ln
a

µ(B1)
.

It follows that for (t, x) as above we obtain
∫

Bδa

e−ξ·x+(|ξ|2+1)t dµ(ξ) �
∫

Bδa

eδaK|t|+t dµ(ξ) � e(δaK−1)|t|µ(B1) � a,

and the proof is finished. � ■ 

We can now prove (1.7) for u = uµ.

Proposition 4.10.  If µ satisfies (H3) and ε ∈ (0, 1
2 ), then there is Lε < ∞ such that for 

each t ∈ R,

Ωuµ,ε(t) ⊆ BLε
(Ωuµ,1−ε(t)).

Proof.  For any ζ ∈ Sd−1, let

Yζ :=
{
ξ ∈ B1 : ζ · ξ �

|ξ|
2

}
= W1/2,ζ ∩ B1.

Let also a := ε
2 |Yζ ||B1|−1 (note that |Yζ | is independent of ζ) and let δa, Ta be from lemma 4.9.

We will first consider times t � −Ta. Fix any such t and let x be such that uµ(t, x) � ε. 
Since vµ(t, x) � uµ(t, x) � ε, there must be ζ ∈ Sd−1 such that

∫

Yζ

e−ξ·x+(|ξ|2+1)t dµ(ξ) � 2a

(otherwise integrate the opposite inequality in ζ ∈ Sd−1 and get a contradiction). If 
uµ(t, x) < 1 − ε, then lemma 4.9 shows that
∫

Yζ∩A(δa,1)
e−ξ·x+(|ξ|2+1)t dµ(ξ) �

∫

Yζ

e−ξ·x+(|ξ|2+1)t dµ(ξ)−
∫

Bδa

e−ξ·x+(|ξ|2+1)t dµ(ξ)

� 2a − a = a,

hence for L−
ε := 2

δa
ln h−1(1−ε)

a > 0 (recall that h(a) � a � ε
2 < 1 − ε) we have

vµ(t, x − L−
ε ζ) =

∫

B1

e−ξ·(x−L−
ε ζ)+(|ξ|2+1)t dµ(ξ)

�
∫

Yζ∩A(δa,1)
eL−

ε (ξ·ζ)e−ξ·x+(|ξ|2+1)t dµ(ξ)

� eL−
ε δa/2a = h−1(1 − ε).

So either uµ(t, x) � 1 − ε or vµ(t, x − L−
ε ζ) � 1 − ε. If we now choose Lε � L−

ε , from theo-
rem 1.2(i) we obtain the claim for all t � −Ta.

Let us now consider t > −Ta. For each ζ ∈ Sd−1 we obviously have
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inf
ξ∈CN,ζ

(−ξ · ζ) � 1
N2 .

Then for each s � L+
ε := N2

(∣∣∣ln h−1(1−ε)
b∗

∣∣∣+ 2Ta

)
 and t > −Ta we have

vµ(t, sζ) �
∫

CN,ζ

e−ξ·sζ−2Ta dµ(ξ) � esN−2−2Taµ(CN,ζ) � esN−2−2Ta b∗ � h−1(1 − ε).

Theorem 1.2(i) then yields uµ(t, sζ) � 1 − ε for all ζ ∈ Sd−1, s � L+
ε , and t > −Ta. Hence

Bc
L+
ε
⊆ Ωuµ,1−ε(t)

for all t > −Ta, and the result follows with Lε := max{L−
ε , L+

ε }.� ■ 

Since each uµ is a transition solution it follows that uµ is indeed a transition solution with 
bounded width.
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Appendix

In this appendix, we prove proposition 4.4. The proof uses two auxiliary lemmas:

Lemma A.1.  If 0 ∈ int(ch({x1, . . . , xk})), then there are ci > 0 such that

k∑
i=1

cixi = 0.

Proof.  There obviously are ai � 0 with 
∑k

i=1 ai = 1 such that 
∑k

i=1 aixi = 0. Since 
0 ∈ int(ch({x1, . . . , xk})), there is δ > 0 such that we have −δxi ∈ ch({x1, . . . , xk}) for each 
i. Thus, each −δxi may be written as a convex combination −δxi =

∑k
j=1 bijxj, with bij � 0 

and 
∑k

j=1 bij = 1. Then

0 =

k∑
i=1

aixi +

k∑
i=1

δxi +

k∑
i=1

−δxi

=

k∑
i=1

(ai + δ)xi +

k∑
i=1

k∑
j=1

bijxj

=

k∑
i=1

(ai + δ +

k∑
j=1

bji)xi.
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Hence we can take ci := ai + δ +
∑k

j=1 bji > 0.� ■ 

Lemma A.2.  If 0 ∈ int(ch({x1, . . . , xk})), then for any r > 0 there is ε > 0 such that any 
p ∈ Bε can be written as

p =

k∑
i=1

aixi, where |ai| � r.

Proof.  There is δ > 0 such that Bδ ⊆ ch({x1, . . . , xk}). Then each z ∈ Bδ can be written as 
z =

∑k
i=1 bixi , where bi � 0 and 

∑k
i=1 bi = 1. Given r > 0, let ε := rδ. Then for any p ∈ Bε 

we have p = rz for some z ∈ Bδ, so p =
∑k

i=1(rbi)xi with some bi ∈ [0, 1]. The proof is fin-
ished.� ■ 

Proof of proposition 4.4.  Let ci > 0 (i = 1, . . . , k) be as in lemma A.1. Consider the 
system of linear equations

AΘ :=




1 + a11 a12 . . . a1k

a21 1 + a22 . . . a2k

...
...

. . .
...

ak1 ak2 . . . 1 + akk







θ1

θ2
...
θk


 =




c1

c2
...

ck




with some given aij ∈ R. The determinant

detA =




1 + a11 a12 . . . a1k

a21 1 + a22 . . . a2k

...
...

. . .
...

ak1 ak2 . . . 1 + akk




is a continuous function of the aij and equals 1 when they all vanish. Thus, there is r0 > 0 such 
that maxi,j |aij| � r0 implies detA > 0. Similarly,

detMl =




1 + a11 . . . a1(l−1) c1 a1(l+1) . . . a1k

a21 . . . a2(l−1) c2 a2(l+1) . . . a2k

...
...

...
...

...
ak1 . . . ak(l−1) ck ak(l+1) . . . 1 + akk




depends continuously on the aij and equals cl > 0 when they all vanish. Thus, there is r1 > 0 
such that maxi,j |aij| � r1 implies maxl detMl > 0.

Let r := min{r0, r1}, and let ε > 0 be as in lemma A.2. Let yj ∈ Bε(xj) be arbitrary and 
denote pj := yj − xj. Then lemma A.2 shows that each pj can be written as

pj =

k∑
i=1

aijxi, with |aij| � r.

Finally, for each j = 1, . . . , k  let

A Alwan et alNonlinearity 32 (2019) 927



940

θj :=
detMj

detA
> 0,

so that Θ = (θ1, . . . , θk) is the (unique) solution of the above system (by Cramer’s rule). Then

k∑
j=1

θjyj =

k∑
j=1

θj(xj + pj)

=

k∑
j=1

θjxj +

k∑
j=1

θj

k∑
i=1

aijxi

=

k∑
i=1

θixi +

k∑
i=1

[ k∑
j=1

aijθjxi

]

=
k∑

i=1

[
θi +

k∑
j=1

aijθj

]
xi

=

k∑
i=1

cixi = 0.

Normalizing now yields the desired convex combination

0 =

k∑
j=1

θj∑k
i=1 θi

yj,

and the proof is finished.� ■ 
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